

Electrochimie

Frederic Melin fmelin@unistra.fr

L2 Chimie L2 Physique Chimie

Plan du Cours

1. Introduction

- 1.1 définition
- 1.2 nombres d'oxydation
- 1.3 équilibration des réactions redox.

2. Applications des potentiels d'électrode

- 2.1 définition et mesure des potentiels d'electrode
- 2.2 loi de Nernst
- 2.3 évolution des réactions redox
- 2.4 détermination de constantes d'équilibre
- 2.5 dosages potentiométriques
- 2.6 électrodes sélectives
- 2.7 Influence du pH (diagrammes E-pH)

Plan du Cours

3. Cinétique des réactions électrochimiques

- 3.1 définition et mesure des vitesses de réaction aux électrodes
- 3.2 systèmes électrochimiques rapides et lents
- 3.3 facteurs influençant la vitesse des réactions aux électrodes
- 3.4 courbes intensité-potentiel

4. Méthodes électrochimiques

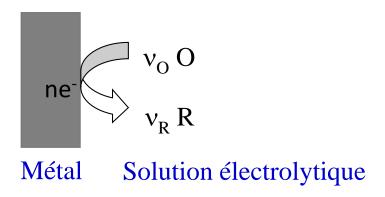
- 4.1 introduction
- 4.2 potentiométrie
- 4.3 ampérométrie
- 4.4 coulométrie
- 4.5 voltampérométrie

Bibliographie

- Electrochemical Methods, Fundamentals and Applications, 2nd Edition (Wiley 2001)

Allen J. Bard, Larry R. Faulkner

- Electrochimie, des concepts aux applications, (Dunod 2005)
 Fabien Miomandre, Saïd Sadki, Pierre Audebert, Rachel Méallet-Renault
- L'oxydoréduction, concepts et expériences (Ellipses 1991) Jean Sarrazin, Michel Verdaguer
- Physical Chemistry, 11th Edition (Oxford University Press 2017)
 Peter Atkins, Julio de Paula, James Keeler


Chapitre 1: Introduction

1.1 définitions

- 1.2 nombres d'oxydation
- 1.3 équilibration des réactions redox

Réactions électrochimiques

→ L'électrochimie étudie les réactions de transfert d'électron entre deux espèces à l'interface entre un conducteur électronique (souvent un métal M) et une solution électrolytique.

→ L'échange d'électron est représenté par une demi-réaction redox. O est appelé l'oxydant et R le réducteur:

$$v_O O + n e^- = v_R R$$

- \rightarrow (O/R) forment un couple redox.
- → Si O est réduit à la surface de M, M est appelé cathode. Si R est oxydé à la surface de M, M est appelé anode.

Réactions redox

→ Il s'agit d'une réaction entre un oxydant et un réducteur appartenant à deux couples redox différents.

```
Exemple: réaction entre Ce<sup>4+</sup> et Fe<sup>2+</sup>

1<sup>er</sup> couple redox: (Ce<sup>4+</sup> / Ce<sup>3+</sup>)

2<sup>ème</sup> couple redox: (Fe<sup>3+</sup> / Fe<sup>2+</sup>)
```

- →Les électrons n'apparaissent pas explicitement dans l'équation-bilan d'une réaction redox.
- → Toutes les réactions redox peuvent être décomposées en deux demiréactions, qui montrent l'échange d'électrons sous-jacent entre les espèces:

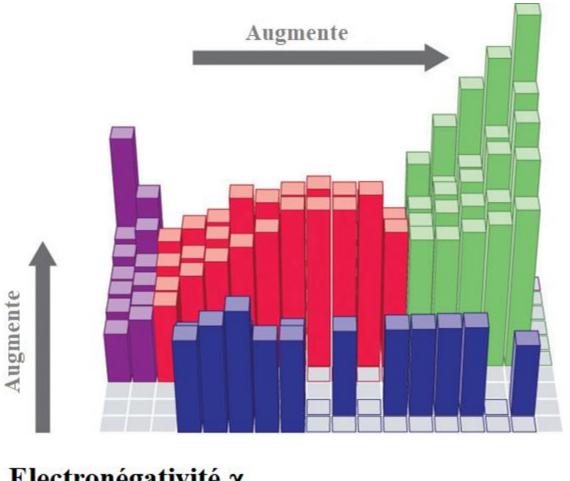
et
$$Ce^{4+} + e^{-} = Ce^{3+}$$

 $Fe^{2+} = Fe^{3+} + e^{-}$
 $Ce^{4+} + Fe^{2+} = Ce^{3+} + Fe^{3+}$

Chapitre 1: Introduction

- 1.1 définitions
- 1.2 nombres d'oxydation
- 1.3 équilibration des réactions redox

Nombres d'oxydation


- → Les nombres (ou degrés) d'oxydation servent à garder une trace du nombre d'électrons perdus ou gagnés par un atome dans un composé chimique.
- → Règles pour déterminer le nombre d'oxydation:
 - 1) Dans les ions monoatomiques, le nombre d'oxydation est égal à la charge de l'ion. Exemples: ^{+I}Na pour Na⁺; ^{-I}Cl pour Cl⁻.
 - 2) Dans les ions polyatomiques ou les molécules, la somme des nombres d'oxydation de tous les atomes est égal à la charge totale de l'édifice (0 pour les molécules neutres).
 - 3) Dans les ions polyatomiques ou les molécules, l'attribution des nombres d'oxydation repose sur la différence d'électronégativité des atomes liés entre eux.

Exemples: ${}^{+I}H$ -Cl $^{-I}$ car $\chi_{Cl} > \chi_{H}$; ${}^{+I}Na$ -H- $^{-I}$ car $\chi_{H} > \chi_{Na}$ et ${}^{+I}H$ - ${}^{-II}O$ -H+ $^{-II}$ car $\chi_{O} > \chi_{H}$

Nombres d'oxydation

- 4) Le nombre d'oxydation le plus courant pour l'hydrogène (hors H₂) est +I
 Seule exception: hydrures (+INaH-I)
- 5) Le nombre d'oxydation le plus courant pour l'oxygène (hors O₂) est -II Seule exception: peroxydes (ex: +IH--IO--IO-H+I)
- 6) Le nombre d'oxydation le plus courant pour les halogènes X (hors X₂) est -I
- 7) Le nombre d'oxydation pour les alcalins (hors métal) est +I; pour les alcalino-terreux (hors metal) est +II.

A propos de l'électronégativité

Electronégativité χ

bloc d bloc f bloc s bloc p

Chapitre 1: Introduction

- 1.1 définitions
- 1.2 nombres d'oxydation
- 1.3 équilibration des réactions redox

Comment équilibrer des réactions redox?

- → Ne jamais équilibrer directement des réactions redox! Commencer d'abord par les demi-réactions.
- → Procédure recommandée: exemple de l'oxidation de Fe²⁺ par MnO₄-
 - 1) Déterminer le nombre d'oxydation de l'atome « actif » dans l'oxydant et le réducteur de chaque couple redox. here (+VIIMnO₄-/+IIMn²⁺) and (+IIIFe³⁺/+IIFe²⁺)
 - 2) En déduire le nombre d'électron échangé dans chacune des demiéquation, en soustrayant les nombres d'oxydation de l'atome « actif » dans l'oxydant et le réducteur. ici +VIIMnO₄ - + 5 e- = +IIMn²⁺ et +IIFe²⁺ = +IIIFe³⁺ + e-
 - 3) Equilibrer les charges en ajoutant H⁺ (en milieu acide) ou OH⁻ (en milieu basique) ici $MnO_4^- + 5$ e- + 8 H⁺ = Mn^{2+} ou $MnO_4^- + 5$ e- $= Mn^{2+} + 8$ OH⁻

 $Fe^{2+} = Fe^{3+} + e$ - est déjà équilibré.

Comment équilibrer des réactions redox ?

- 4) Equilibrer les autres atomes (souvent H et O, en ajoutant H_2O) ici $MnO_4^- + 5 e^- + 8 H^+ = Mn^{2+} + 4 H_2O$
- 5) Equilibrer le nombre d'électrons échangé dans les deux demiréactions

ici
$$MnO_4^- + 5 e^- + 8 H^+ = Mn^{2+} + 4 H_2O$$

et $Fe^{2+} = Fe^{3+} + e^-$

Il est nécessaire de multiplier la deuxième par 5 pour avoir le même nombre d'électrons échangés:

$$5 \text{ Fe}^{2+} = 5 \text{ Fe}^{3+} + 5 \text{ e}$$

6) Additionner les deux demi-réactions. Les électrons doivent disparaître de l'équation.

ici
$$MnO_4^- + 5 Fe^{2+} + 8 H^+ = Mn^{2+} + 5 Fe^{3+} + 4 H_2O$$