Dans les études expérimentales en cinétique, exemple d'une réaction en phase gazeuse, où la mesure de la pression totale permet d'accéder à la concentration des réactifs et des produits, et de vérifier la loi de vitesse.

Décomposition de l'éthylamine (sujet concours B ENSA, 2009)

On étudie l'équilibre homogène en phase gazeuse suivant :

$$C_2H_5NH_{2(g)} = C_2H_{4(g)} + NH_{3(g)}$$

À température élevée, on va considérer que cette réaction est quasi totale dans les conditions de l'expérience. Cette réaction est suivie à 500°C par la mesure de la **pression totale** au sein d'un réacteur de volume constant. On a obtenu les résultats suivants :

t (min)	0	2	4	8	20	30
P (bar)	7,24.10 ⁻²	8,42.10 ⁻²	9,47.10 ⁻²	1,10.10 ⁻¹	1,34.10 ⁻¹	1,41.10 ⁻¹

- **1.** Donner la définition de la vitesse de la réaction, et l'expression de la loi de vitesse si la réaction admet un ordre α .
- **2.** Donner les expressions de la concentration de l'éthylamine à t et à t_0 en fonction de la pression initiale P_0 et de la pression totale P.
- **3.** Si on suppose une cinétique du $\mathbf{1}^{ier}$ ordre, donner la relation liant les pressions P, P_0 et le temps
- **4.** Vérifier que les données expérimentales confirment l'ordre 1.

Correction:

1.

D'où

Soit

$$[\acute{e}thylamine]_t = (2P_0 - P) / RT$$

et

$$[\acute{e}thylamine]_0 = P_0 / RT$$

3.

4.

) On représente $\ln \left(2 - \frac{P}{P_0}\right) = f(t)$, on obtient une divite liveraix décroissante de parte -k = -0, 093 min ^ 2 k = 0, 093 min ^ 2 ce pui confirme 2' hypothèse de l'ordre 1.